Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.
Input: [[1,1,1], [1,0,1], [1,1,1]] Output: [[0, 0, 0], [0, 0, 0], [0, 0, 0]] Explanation: For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0 For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0 For the point (1,1): floor(8/9) = floor(0.88888889) = 0
- The value in the given matrix is in the range of [0, 255].
- The length and width of the given matrix are in the range of [1, 150].
implSolution{pubfnimage_smoother(m:Vec<Vec<i32>>) -> Vec<Vec<i32>>{letmut ret = vec![vec![0; m[0].len()]; m.len()];for i in0..m.len(){for j in0..m[0].len(){letmut cnt = 0;for k in i.saturating_sub(1)..=(i + 1).min(m.len() - 1){for l in j.saturating_sub(1)..=(j + 1).min(m[0].len() - 1){ ret[i][j] += m[k][l]; cnt += 1;}} ret[i][j] /= cnt;}} ret }}